We humans live in perpetual fear of epidemics. Some nasty new bug emerging from the jungle, sweeping across humanity and knocking off millions of us in the process. Or perhaps an existing pathogen that mutates into a superbug capable of spreading like wildfire, transmitted by as little as a dirty look.
While sometimes bordering on irrational (cheers Hollywood), our fear of epidemics is well placed. We’ve had some doozies in the not too distant past. Take Spanish Flu – a disease that killed somewhere between 50 and 100 million people between 1918 and 1920, reducing the world population by up to 5%. What’s more, our spine-bearing brethren give us regular reminders of the ruinous power of pathogens. Examples include white-nose syndrome in bats, avian malaria, Parapoxvirus in squirrels and the recent implosion of Saiga populations on the Eurasian steppe.
In the wildlife realm however, one disease stands head-and-shoulders above the rest as a potent reminder of the destructive capacity of pathogens. Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis, has killed literally millions of frogs across the globe over the last four decades, driving thousands of local extinctions and either major decline or global extinction for up to 200 species. A truly remarkable feat for a single pathogen. In Australia, chytrid hit in the late 1970’s, arriving first (we believe) in Brisbane, before heading north and south along the east coast, and skipping across to Western Australia and Tasmania. It left carnage in its wake. Frogs that were formally abundant and readily found simply disappeared. Apart from a few observed die-offs, numerous populations went up in a figurative puff of smoke. Seven species met their doom.
Our most recent paper reviews what happened next. Led by the inimitable Dr Ben Scheele, the paper draws together published and unpublished data to review the fate of Australian frogs impacted by chytridiomycosis following the initial epidemic. We detail the varying responses of these species, ranging from ongoing decline, to stabilisation and even recovery. Furthermore, the review draws together the known mechanisms underpinning these responses, which Australian and international herpetologists have steadily revealed over the last two decades.
The news is mixed. Chytridiomycosis remains the chief threat to several highly endangered frogs in Australia, such as the Southern Corroboree Frog and Baw Baw Frog, both of which may soon no longer persist in the wild. However, others have stabilised and some have even clawed back formerly occupied territory. Encouragingly, the latter may be on-route to full recovery. The review also highlights that we now know enough to trial management options for some species. For example, it may be possible to target reintroduction efforts to habitats with few reservoir hosts of chytrid, or we may be able to manipulate the environment in ways that gives susceptible frogs an epidemiological or demographic edge over the fungus (a topic on which my own research has focused in recent years).
With that, I commend the paper to you. As always, if you’d like to read the paper but can’t get through the paywall, drop me an email and I’ll send it through.